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Established Simplifications and Open Questions
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An assessment is given of the present state of modeling and simulation of buoyancy
driven gas-liquid bubble flow based on the two-fluid approach. Main points of discussion
comprise the admissible model simplifications in order to obtain a more easily solvable
model together with the question of which physical effects are of prime importance and
which reliable correlations can be recommended or are still missing. It is shown that, for
most practical cases, the two-fluid model can be simplified to a formulation which allows
for the application of efficient solution strategies for single-phase flow. From the different
interaction forces between gas and liquid, pressure and drag force are most important,
whereas no sound experimental basis is available for (lateral) lift forces. So far, lift forces
have primarily been used empirically to adjust the gas distribution to the experimental
observation. The main open question concerns the proper modeling of turbulence in
gas-liquid bubble flow since it affects both the mixture viscosity and the bubble dispersion.
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Introduction

Bubble induced gas-liquid flow is the basis of fluid move-
ment in many chemical engineering devices and applications
ranging from boilers or evaporators over two- or three-phase
bubble column reactors of various design to large-scale
aerobic (and sometimes anaerobic) sewage treatment plants.
About 10 years ago, modeling and simulation of these
systems was restricted to strongly simplified (overall) flu-
id-flow models, primarily because the computer power for
the solution of more detailed models was not sufficient. In
the meantime a number of efficient commercial CFD-codes
are available and the power of desktop PC or workstations is

strong enough for quite detailed simulation studies (Sanyal
et al., 1999; Krishna et al., 2000; Pfleger and Becker, 2001).
In most cases reasonable to good agreement of experimental
results and simulations has been shown or claimed, implying
that the predictive power of CFD simulations for bubble
flow is already a a reliable level. A closer look, however,
reveals that the question of which physical effects are of
prime importance and how they should be modeled is still
under strong debate.

In this contribution we therefore try to assess the gener-
ally accepted and/or well documented state of bubble flow
modeling and point at the questions which are unresolved or
under dispute. The discussion will be restricted to buoyancy
driven bubble flow excluding forced convection. It will only
consider the volume averaged two-fluid approach, which
presently seems best suited for a simulation of larger-scale
systems.
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The last comprehensive reviews on the modeling of bubble
driven flows were Jakobsen et al. (1997), Joshi (2001), Joshi et
al. (2002). They listed the different approaches for the model-
ing of bubble-liquid interaction forces and only briefly ad-
dressed bubble induced turbulence. Joshi (2001) also clearly
pointed at the large number of unresolved questions and gave
suggestions for future work. In this contribution we want to
answer some of these questions like the influence of the nu-
merical solution procedure, the necessity of a three-
dimensional (3-D), fully dynamic simulation for most applica-
tions, and the importance of different modeling assumptions
for gas-liquid interaction, while stressing the still unknown or
unresolved points. We will critically evaluate the different
modeling aspects with respect to their influence on simulation
results in the above specified range of operating conditions, as
well as their present state of experimentally approved justification.

Two-Fluid Euler-Euler Model

The derivation of the model equations for the two-phase
bubbly flow starts with the assumption that both phases can be
described as continua, governed by the partial differential
equations of continuum mechanics. The phases are separated
by an interface, which is assumed to be a surface. At the
interface, jump conditions for the conservation of mass and
momentum can be formulated (Ishii, 1975; Drew, 1983).

The direct solution of these microscopic equations supple-
mented by appropriate initial conditions would yield a com-
plete description of the two-phase flow. This approach is called
direct numerical simulation (DNS). Since systems of practical
interest usually comprise a large number of interacting bubbles,
such problems are far too complicated to permit a direct solu-
tion. The application of DNS to the simulation of turbulent
two-phase flow is thus restricted to the flow around a few gas
bubbles (Lin et al., 1996; Tryggvason et al., 1998) and cannot
be used for modeling of industrial-scale reactors.

The problem has to be simplified by replacing the point
variables by variables averaged over space and/or time. The
resulting equations desacribe the motion of the two phases
(fluids) as if they were interpenetrating and interacting con-
tinua, assuming that each element or finite volume of the
spatial domain contains a certain fraction �l of the continuous
(liquid) and a fraction �g � 1 � �l of the dispersed (gas)
phase. Since the resulting equations are formulated in the
Eulerian frame of reverence, such models are called two-fluid
or Euler-Euler models.

The simplified viewpoint provided by the two-fluid models
requires the specification of phase forces and of stress terms in
the momentum equations (the latter are often called turbulent
stress terms, although they have a somewhat different origin).
The form of these “closure” terms has to be determined em-
pirically or even postulated. This gives room for controversy
with respect to the final form of the macroscopic equations
describing bubbly flow.

However, apart from the differences in the modeling of the
interphase force and the turbulence terms, most of the two-fluid
models presented in the literature are very similar to each other
and consist of the continuity and momentum equations for the
gas phase (index g) and the liquid phase (index l ). If the
discussion is restricted to bubble flow hydrodynamics, the
following additional assumptions are usually made: isothermal

conditions; no mass transfer between the two phases; constant
liquid density �l; gas density |g depending on local pressure p
as described by the ideal gas law; and all bubbles generated at
the sparger are grouped into bubble classes of constant mass;
the bubbles of each class retain their mass as long as they are
in the two-phase flow domain. This means that: bubble coales-
cence and re-dispersion are neglected.

These assumptions will also be used in the following.

Continuity equations

Since no mass transfer is considered between gas and liquid,
the continuity equation can be formulated for both phases
independently without an additional mass-transfer term

���k|k�

�t
� � � ��k�kuk� � 0 k � l, g (1)

Momentum balances

Since molecular viscous stress tensor can be neglected in
comparison with the turbulent stress tensor for both phases, the
momentum balances can be formulated according to Drew
(1983) as

���k|kuk�

�t
� � � ��k|kukuk�

� � � �kTk
turb � �k�p � �k|gg � Fint k � l, g (2)

The only difference between the momentum equations for the
two phases is the sign of the interaction force Fint, which is
positive for the liquid phase and negative for the gas phase. The
first term on the righthand side corresponds to the momentum
flux due to turbulent stresses, which can be evaluated from an
appropriate turbulence model. The modeling of the interaction
force Fint and of the turbulent stresses will be discussed in
subsequent sections. At this stage, it is assumed that these
terms are known.

If bubbles of different mass have to be considered, separate
continuity equations and momentum balances are required for
each bubble class.

Invoking the equations of state for each phase

|l � const (3)

|g �
p

RTo
(4)

and the closure relation

�l � �g � 1 (5)

we obtain a closed system of differential and algebraic equa-
tions, which describes the dynamic behavior of the two-phase
flow and can be solved numerically.
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Model Simplifications and Numerical Solution
Procedure

Detailed comparison between experiments and simulations
has shown that important characteristics of the flow structure
can only be resolved by a 3-D dynamic simulation on a
sufficiently fine spatial grid (Sokolichin and Eigenberger,
1999; Borchers et al., 1999). It is obvious that an accurate
integration in time is equally important. Since the dynamic
solutions have to be computed on fine spatial grids over a
prolonged real-time period, the availability of efficient numer-
ical solution procedure is of decisive importance.

Before discussing the modeling of the interphase force Fint

and of the turbulent stresses Tk
turb, we will therefore discuss the

two-fluid model (1–5) from the numerical point of view.
The numerical load depends on the number and the com-

plexity of the different terms in the model equations and on the
rate of convergence of the iteration loops which, in turn,
depends on the number and the character of the coupling terms
between the model equations. Model simplifications are, there-
fore, essential for an increased speed of convergence.

The influence of the different model simplifications on the
accuracy of the solution in specific situations is at present not
sufficiently understood. Its systematic investigation presents an
important direction for further research. In the following, some
crucial model assumptions and simplifications will be de-
scribed and their implications—as far as presently known—
will be discussed.

Pressure equation

The set of equations describing the hydrodynamics in a
gas-liquid system can only be solved effectively if it is possible
to decouple the solution procedure so that an efficient iterative
scheme can be used. Since the model contains no explicit
equation for the determination of the pressure, Patankar (1980)
derives such an expression for a single-phase system through a
transformation of the continuity equation. In a two-phase sys-
tem the derivation of a respective equation is more complicated
than in the single-phase case, because two continuity equations
have to be considered instead of one (Spalding, 1985). The
resulting pressure equation is no longer linear, but quadratic
and requires additional iterations.

At low gas holdups, the value of �l is close to one. If we
neglect the variation of �l due to the presence of gas in the
continuity equation of the liquid phase

��l

�t
� � � ��lul� � 0 (6)

it will be transformed into

� � ul � 0 (7)

This allows to derive a pressure equation as in the single-
phase case. The continuity equation of the gas phase can then
be used to calculate the local gas holdup distribution.

Let us study the validity of this simplification in the case
when the gas holdup is not very close to zero. If we assume
both phases to be incompressible, we can eliminate the densi-

ties from the continuity equations, and the sum of the continu-
ity equations for both phases results in

� � ��lul � �gug� � 0N � � ul � � � ��g�ug � ul�� � 0 (8)

Since the slip velocity uslip � (ug � ul) is dominated by the
vertical component uslip

x and is approximately constant, Eq. 8
implies that

� � ul � �uslip
x

��g

�x
(9)

We see that, even at higher gas holdups, Eq. 7 is a good
approximation to Eq. 9, if the gas holdup does not vary too
much in the vertical direction. This condition is, of course,
violated during the first seconds after the onset of the aeration,
when the gas front propagating through the reactor has a sharp
discontinuity in the vertical direction. As long as the gas front
has not reached the free surface, the integral gas holdup in the
reactor increases continuously leading to the rise of the free
surface. If Eq. 7 is used instead of Eq. 6, this effect cannot be
reproduced in the simulation. Figure 1 shows the liquid veloc-
ity field and the gas holdup 0.1 s after the onset of the aeration
in a 2-D locally aerated flat bubble column (see Becker et al.
(1994) for the description of the test case). The simulation
results obtained with Eq. 6 show that the liquid velocity has a
positive vertical component almost everywhere in the column,
because the liquid is displaced by the rising gas (Figure 1, left).
Equation 7 neglects this displacement effect, and the motion in
the liquid phase can be observed only in the vicinity of the
sparger (Figure 1, right), due to the density differences in the
gas/liquid-mixture (the buoyancy effect).

After the gas front has reached the liquid surface, the integral
gas holdup in the reactor does not increase anymore and the
level of the free surface remains approximately constant. The
distribution of the gas holdup no longer has sharp discontinui-
ties in the vertical direction, so that Eq. 7 is a good approxi-
mation to Eq. 9 and can be used instead of Eq. 6 for the
derivation of the pressure equation. Figure 2 presents the
simulation results 10 s after the onset of the aeration. We see
that now the liquid velocity field and the gas holdup distribu-
tion calculated with either Eq. 6 or Eq. 7 agree almost com-
pletely.

Momentum balance for the gas/liquid mixture

In the last subsection we discussed the volumetric coupling
between the two phases. This coupling effect stems from the
fact that each change of the volume fraction of the gas phase
requires a respective change in the liquid phase. We have seen
that this coupling effect can be neglected under quite realistic
conditions.

The other—much more important—coupling mechanism
between the liquid and the gas phase manifests itself in the
presence of the interaction force term Fint in both momentum
balances of the two-fluid model. On the one hand, the motion
of the bubbles is affected by the flow of the surrounding liquid.
On the other hand, the liquid phase is accelerated by the
bubbles, which are ascending relative to the surrounding liquid.
The two-fluid model takes both effects into account by means
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of the interphase force terms in the momentum balances, so
that one speaks of the two-way coupling mechanism.

In the iterative numerical solution, the consideration of the
full two-way coupling leads to severe convergence problems, if

the momentum equations for both phases are solved indepen-
dently. One possible way to overcome these difficulties is to
omit the interaction force from the momentum balance for the
liquid phase, neglecting the influence of the dispersed phase on

Figure 1. Locally aerated flat bubble column.
Liquid velocity field and the distribution of the gas holdup 0.1 s after the onset of the aeration calculated using Eq. 6 (left) and Eq. 7 (right).
(2-D-simulation with laminar viscosity.)

Figure 2. Same example as Figure 1, 10 s after the beginning of the aeration, calculated with Eq. 6 (left) and Eq. 7 (right).
(2-D-simulation with laminar viscosity.)
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the motion of the continuous phase. This means that the math-
ematical model provides for the one-way coupling only. The
restriction to the one-way coupling is admissible only in cases
when the liquid phase is driven mechanically, and the volume
fractions of the dispersed phase are very moderate.

However, in the case of bubble columns and airlift loop reac-
tors, the fluid motion is induced by density differences between
the aerated and nonaerated regions. This buoyancy effect can only
be reproduced if the full two-way coupling is considered. In case
of the one-way coupling, the gas bubbles would be moving
upwards through the reactor without affecting the liquid phase, as
shown by Delnoij et al. (1997a, Figure 9).

A better way to accelerate the convergence of the numerical
algorithm is to rearrange the model equations in such a way
that the coupling between the resulting equations becomes
weaker than in the original system. Such rearrangement can be
done either on the level of the discretized equations (as in the
partial elimination algorithm (PEA), proposed by Spalding
(1976)) or on the level of differential equations. Our experience
shows that in the case of bubbly flows the second approach is
much more effective. Since this approach is still not generally
accepted by the CFD community, we will describe it in some
detail.

First, we replace the momentum balance for the liquid phase
by the momentum balance for the gas-liquid mixture by adding
the momentum balances (2) for both phases

���l|lul�

�t
� � � ��l|lulul� �

���g|gug�

�t
� � � ��g|gugug�

� � � �lTl
turb � � � �gTg

turb � �p � �l�lg � �g|gg (10)

The important advantage of this equation is that it does not
contain the interphase force Fint. Different from the one-way
coupling model, the interaction force Fint was not neglected but
is canceled out as a result of a mathematical transformation.
Thus, the buoyancy effect is still reproduced by the mathemat-
ical model, as we will see later.

The momentum balance for the gas-liquid mixture now
contains more terms than the momentum balance for the liquid
phase. In case of general two-phase flow, there is no advantage
of solving the mixture momentum balance instead of the mo-
mentum balance for the continuous phase. However, in the case
of a gas/liquid bubbly flow, we can use the fact that the density
of the gas phase is usually much smaller than the density of the
liquid phase and omit the terms containing |g without great
loss of accuracy. We obtain (note that Tk

turb is proportional to
|k, as shown by van den Akker (1986)

���l|lul�

�t
� � � ��l|lulul� � � � �lT

turb � �p � �l|lg (11)

This is numerically a much more convenient form, as we will
see in the following section.

To make the similarities between single-phase flow and
two-phase bubble flow more obvious, we will introduce a
further simplification, which represents the limiting case of
sufficiently small local gas holdup �g. We can then assume the
value of �l � 1 � �g to be equal to unity in all terms except
for the gravity force, yielding

P�|lul�

�t
� � � �|lulul� � � � Tl

turb � �p � |lg � �g|lg (12)

This simplification resembles the Boussinesq approximation
(Boussinesq, 1903) frequency employed in the modeling of
free convection in single-phase systems, where the variation of
density due to temperature gradients is considered only in the
gravity term, whereas all other terms in the Navier-Stokes
equations coincide with those for an incompressible fluid.

Numerical solution

After the simplification described in the previous subsection,
the resulting system of model equations for bubble flow with
small gas holdup reads

� � ul � 0 (13)

��|lul�

�t
� � � �|lulul� � � � Tl

turb � �p � |lg � �g|lg (14)

|l � const (15)

���g|gug�

�t
� � � ��g|gugug�

� � � �gTg
turb � �g�p � �g|gg

� Fint (16)

|g �
p

RTo
(17)

���g|g�

�t
� � � ��g|gug� � 0 (18)

Equations 13–15 fully correspond with the mass and momen-
tum balance equations and the equation of state for one-phase
flow, except for the last term on the righthand side of Eq. 14.
This term describes a force which is directed upwards and is
proportional to the local gas holdup. The gas-liquid flow can
thus be interpreted as a one-phase flow with an additional
buoyancy source term in the momentum balance. This means
that the first three equations can be solved in exactly the same
way as in the one-phase case using some iteration procedure,
for example, the SIMPLER scheme of Patankar (1980). The
only modification of this algorithm is that at the end of each
iteration loop we have to update the local values of �g in the
spatial domain. The sequence of operations can be summarized
as follows:

(1) Start with the liquid velocity, pressure and gas holdup
values from the end of the last time step.

(2) Calculate the new liquid velocity field and the new
pressure using one iteration of the SIMPLER procedure as
described in Patanker (1980).

(3) Calculate the gas velocity using Eq. 16.
(4) Calculate the gas density using Eq. 17.
(5) Solve the gas transport equation (Eq. 18) to obtain the

new values of gas holdup.
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(6) Return to step 2 and repeat until convergence, then go to
the next time step.

The described solution procedure turned out to be very
efficient. In most test cases studied so far no underrelaxation
was necessary and the convergence could usually be reached
after 2–3 iterations, if the time step size was appropriately
chosen. The pressure equation and the pressure correction
equations were solved using an inner iteration procedure,
whereby the best convergence rate was reached using the
SIP-method of stone (1968) or modifications thereof for the
3-D case. As a result, dynamic simulations with a final spatial
grid (order of 500,000 grid points) can be performed on stan-
dard workstations. A number of numerical examples can be
found in Sokolichin and Eigenberger (1999), Borchers et al.
(1999), and in this contribution.

The simplified version of the mixture momentum balance
(Eq. 12 or 14) was used above in order to make the analogy
with the one-phase Navier-Stokes system more evident. If the
local gas holdup is not very low, Eq. 11 can be used instead.
The values of the liquid holdup needed for solution of Eq. 11
have to be calculated from the relation �l � 1 � �g after
performing step 5, which has no influence on the convergence
rate of the iteration.

Accuracy of the numerical solution

For many of the numerical simulation results of gas-liquid
flows, published in recent years, the influence of the spatial grid
resolution and, for dynamic simulations, of the time step size
has not obtained the necessary attention.

Our results show that, for first-order methods, the effect of
numerical diffusion on the solution accuracy can be devastating
(see, for example, Sokolichin et al., 1997). In this respect the
very popular linear methods using a blending or switching
strategy between first- and second-order accurate methods (the
well-known “hybrid” and “power-law” schemes, see Patankar
(1980)) have to be considered as first-order methods, since in
the case of vanishing diffusion coefficients they become equiv-
alent to the first-order upwind scheme. Based upon this expe-
rience, we recommend to use the second-order central-differ-
ence flux approximation for the diffusive terms and the TVD
approach, described in detail by Sokolichin et al. (1997) and
Sokolichin and Eigenberger (1999) for all convective terms.
The TVD method used in based on a nonlinear blending
strategy between first and second-order accurate schemes. The
computational cost of a TVD scheme (per grid point) is higher
than that of first-order schemes, but its computational effi-
ciency (accuracy per overall costs) is much greater, because the
TVD discretization is nearly second-order accurate for smooth
solutions.

For the time discretization, a fully implicit backward differ-
ence time stepping procedure with constant time steps in the
range 0.05–0.2 s has been adopted for stability reasons. The
use of this first-order accurate scheme is sufficient for the
examples presented here, because the flow patterns in the airlift
loop reactors are quasi-steady state and the oscillation fre-
quency of the bubble swarm in the locally aerated bubble
column is very low, as compared to the time step used in the
computations. However, a more refined time step control strat-
egy could certainly increase the efficiency of the computations
further.

For all results presented in this article, solutions over a wide
range of spatial resolutions and time steps were examined in
order to verify the grid independence or at least the grid
convergence of the simulation results.

Modeling of the Gas Velocity

In the framework of the two-fluid model (1–5), the interac-
tion force Fint appears in the momentum balances for both
phases. Since we replaced the momentum balance for the liquid
phase by the momentum balance for the gas/liquid mixture, the
resulting system (13–18) contains this term only in the mo-
mentum balance for the gas phase (16). During the iteration
procedure described above, the momentum balance for the gas
phase is used for the calculation of the gas velocity.

Instead of modeling the interaction force Fint explicitly, a
direct way to calculate the velocity of the gas phase can be
applied. It is based upon the equation of motion of a single gas
bubble in the Lagrangian frame of reference. In a second step
(Eq. 44) the velocity of a single bubble ub can be related to the
gas phase velocity ug.

The motion of gas bubbles can be generally described by
Newton’s law

d�mbub�

dt
� Ftotal (19)

ub denotes here the Lagrangian velocity of each bubble, mb

is the mass of the bubble, and Ftotal is the sum of all (interfacial
and body) forces acting on the bubble. The following forces are
usually considered in the literature.

Pressure Force

The pressure force results from the global pressure gradient
and can be expressed as

Fp � �Vb � �p, (20)

where Vb stands for the volume of a single bubble. The pres-
sure force coincides with the Archimedes’ buoyancy force
acting on a bubble under the assumption that the actual pres-
sure gradient can be approximated by the hydrostatic pressure
gradient �p � |lg

Fp � �Vb|lg (21)

Gravity Force

The influence of the gravity force can be described by

Fg � mb � g (22)

Interaction Forces

Only pressure and gravity forces are acting on a motionless
bubble in a liquid at rest. Since there is usually a relative
motion between the bubble and the liquid, the liquid flow
around individual bubbles leads to local variations in the pres-
sure and shear stress. The resulting interaction forces due to
these variations cannot be considered in detail within the
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framework of a two-fluid model, but have to be approximated
through more or less empirical correlations. Usually three
different contributions are taken into account, the drag force
Fd, the added mass force Fam, and the lift force Fl. The three
contributions will be discussed in the following subsections.

Drag Force

A bubble that moves relative to a liquid accelerates part of
the liquid around it and is in turn slowed down by the sur-
rounding liquid. This drag force is the dominant contribution to
the interaction force and often it is the only one considered. It
is common to describe the drag force Fd by

Fd � �
1

2
Cd|l�

db
2

4
�ub � ul��ub � ul� (23)

db denotes here the (equivalent) bubble diameter, and Cd is a
(dimensionless) drag coefficient. In the case of single bubbles,
Cd has to depend on the bubble Reynolds number (Re), Eötvös
number (Eö), and Morton number (Mo) or Weber number
(We) (Clift et al., 1978), which are defined as follows (we
assume here that |g 	 |l and use |l instead of 	|)

Re �
|ldb�ub � ul�


l

Eö �
g|ldb

2

�

Mo �
g
l

4

|l�3

We �
|l�ub � ul�2db

�

� stands for the surface tension coefficient (� � 0.07 kg/s2 for
water). The following discussion of different formulae for the
drag coefficient is restricted to the air/water system, since most
gas-liquid simulations presented in the literature are dealing
with these substances.

The derivation of reliable empirical correlations for the drag
coefficient Cd is complicated by the fact that a direct measure-
ment of the drag force acting on a gas bubble is possible only
for the terminal rise velocity of a single air bubble in stagnant
liquid. The only quantity which can be varied in this experi-
ment is the bubble diameter, so that the measurements produce
a diagram which describes the dependence of the bubble ter-
minal rise velocity on the bubble diameter. It is well known
that such experimental results exhibit considerable fluctuations,
because the bubble rise velocity depends strongly on the purity
of water. Figure 3 shows the curves representing the depen-
dence of the terminal velocity urise on the diameter of single air
bubbles in stagnant tap and distilled water. Both curves are
calculated analytically, according to expression 2.11 from Fan
and Tsuchiya (1990), where the curve parameters were fitted to
the measurement results presented by Haberman and Morton
(1953). Note that, particularly in the range of bubble diameters
1 mm 
 db 
 2 mm, large differences in the rise velocity of
single bubbles are observed. These differences are due to the

fact that, as a result of surface-active impurities in tap water,
the bubble surface is immobilized, which decreases the bubble
rise velocity (Wesselingh, 1987).

Since the experimental information available to date is in-
sufficient to determine unambiguously the drag coefficient Cd

as a function of the three dimensionless numbers, the literature
abounds with various controversial correlations.

Some frequently used correlations for the drag coefficient Cd

are presented in Table 1. A very simple expression for the drag
force was proposed by Schwarz and Turner (1988). They lump
the product 1/ 2Cd|l�(db

2/4)�ub � ul� to CwVb, so that the
expression 23 for the drag force is simplified to

Fd � �CwVb�ub � ul� (24)

with a constant value for Cw (Correlation F)

Cw � 5 � 104
kg

m3 � s
, (25)

leading to a mean bubble slip velocity of about 20 cm/s, which
agrees well with experimental values for air bubbles in tap
water.

An essential advantage of this approach lies in the fact that
this correlation enables a direct calculation of the slip velocity
uslip :� ub � ul from

uslip � �
�p

Cw
(26)

if the only forces to be taken into account are the pressure force
20 and the drag force 24, while all other correlations from
Table 1 require the computationally expensive iterative proce-
dure for the calculation of the slip velocity.

Due to its simplicity, correlation F was used by many au-
thors (Becker et al., 1994; Deng et al., 1996; Grienberger and

Figure 3. Terminal velocity urise of single bubbles in
stagnant tap and distilled water, according to
expression 2.11 from Fan and Tsuchiya (1990).
Solid line-terminal velocity urise calculated from Eq. 27 for
Correlation A (see Table 1).
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Hofmann, 1992; Hillmer et al., 1994; Kuzmin, 1999; Lapin et
al., 2001; Sokolichin and Eigenberger, 1994; Svendsen et al.,
1992; Torvik and Svendsen, 1990).

Sokolichin and Eigenberger (1999) and Borchers et al.
(1999) assumed a constant bubble slip velocity of 20 cm/s and
reported a very good agreement with experiment for a series of
test cases of steady-state and dynamic turbulent bubbly flows in
a locally aerated bubble column with different aspect ratios.
We will use one of their examples to discuss the sensitivity of
the simulated fluid dynamics on the bubble slip velocity as-
sumed.

A flat bubble column with 2.0 m height, 0.5 m width and
0.08 m depth was considered. The liquid height equals 1.0 m,
which corresponds to the aspect ratio H/D of 2. The gas is
dispersed by means of a frit sparger centrally located at the
bottom of the column. At superficial gas velocity of 0.4125
mm/s, which corresponds to gas throughput of 1 L/min, the
flow in the flat bubble column has a quasi-periodic character.

Liquid vortices which move downwards on the lefthand and
righthand sides of the column are responsible for the oscillatory
motion of the bubble swarm shown on the left of Figure 4.
Isolines of the gas volume fraction from the corresponding
simulation are displayed in the middle, and vector plots of the
liquid velocity can be seen on the righthand side. Experimental
and simulated results are in good accord concerning shape,
bubble dispersion close to the liquid surface, and time period of
oscillations.

A quantitative comparison of LDA measured and calculated
liquid velocity data is presented in Figure 5. Since dynamic
measurements with LDA are restricted to single points, only
the time-averaged velocity patterns can be compared with
respective simulation results. With this long-time averaging,
the oscillations caused by moving vortices result in a symmet-
ric flow structure.

The long-time averaged flow map of liquid velocity shows
two vortices on both sides of the bubble swarm (Figure 5a). A

Table 1. Frequently Used Correlations for the Drag Coefficient Cd (Both Expressions for E are Equivalent)

No. Correlation Ref.

A
Cd � �24

Re
�1 � 0.15Re0.687�, if Re 
 1,000

0.44, if Re � 1,000

Delnoij et al. (1997a,b)
Djebbar et al. (1996)
Kuwagi and Ozoe (1999)
Mudde and Simonin (1999)
Sommerfeld et al. (1997)

B Cd � Max�24

Re
�1 � 0.15Re0.687�,

8

3
�

Eö

Eö � 4�
Pan et al. (1999, 2000)
Tomiyama et al. (1995a)
Tomiyama (1998)
Tsuchiya et al. (1997)

C Cd �
0.622

1.0

Eö
� 0.235

Bhanu and Mazumdar (1997)
Jakobsen et al. (1997)
Johnansen and Boysan (1988)
Ranade and van den Akker (1994)

D Cd � �
24/Re, if Re 
 0.49
20.68/Re0.643, if 0.49 
 Re 
 100
6.3/Re0.385, if Re � 100, We � 8 and Re � 2,065.1/We2.6

We/3, if Re � 100, We � 8 and Re � 2,065.1/We2.6

8/3, if Re � 100, We � 8

Boisson and Malin (1996)
Ilegbusi et al. (1998)
Jenne (1999)
Kuo and Wallis (1988)

E

Cd �
2

3
Eö1/2

or

Cd�
2

3
db�g|l

�

CFD-Software Package CFX 4.2
(AEA Technologies)
Ishii and Zuber (1979)
Morud (1994)
Morud and Hjertager (1996)

Figure 4. Oscillating flow in the flat bubble column.
Bubble swarm images (left), calculated gas holdup (center), and liquid velocity field (right) at two different times (Borchers et al., 1999).

AIChE Journal 31January 2004 Vol. 50, No. 1



similar flow structure was obtained in the simulations (Figure
5b). Also, 1-D velocity profiles at difference heights (Figure
5c) show good agreement of experiments and simulations.
Differences occur only in the region directly above the gas
sparger where the flow has a very turbulent, chaotic structure.

In the underlying experiment, gas bubbles with equivalent
diameters of 2 to 6 mm were mainly observed. Figure 3
illustrates that for bubbles with diameters above 1.5 mm their
terminal velocity in the tap water varies in the range between
20 and 25 cm/s. Our assumption of a constant slip velocity of
20 cm/s corresponds to the lower bound of this range. To
investigate the influence of the slip velocity on the simulation
results, we performed comparative simulations with the slip
velocity set equal to 25 cm/s. The results for both values of the
slip velocity are presented in Figure 5d. It is evident that the
calculated liquid velocity profiles do not respond very sensi-
tively to the variation of uslip. Similar comparisons were per-
formed for all test cases from Sokolichin and Eigenberger
(1999) and Borchers et al. (1999). The weak dependence of the
simulation results on the employed value of the slip velocity
was observed for all test cases.

This phenomenon is due to the fact that a 25% increase in the
slip velocity from 20 cm/s to 25 cm/s does not necessarily lead
to an equivalent increase in the vertical bubble velocity. For
example, in the flat bubble column with an aspect ratio of 2
presented in Figures 4 and 5, the instantaneous vertical veloc-
ity of the liquid phase (which is substantially higher than the
long-time averaged velocity depicted in Figure 5c) along the
bubble trajectory lies in the range of 30 cm/s, so that an
increase in the slip velocity of 25% results in an increase of the
vertical bubble velocity (which can be represented as a sum of
the liquid velocity and slip velocity) of just 10%.

Nevertheless, the assumption of a constant slip velocity, as
well as the application of correlation F for the calculation of the
drag force, has often been questioned since the dependence of
the slip velocity on the bubble diameter is completely ne-
glected. Therefore, it would be interesting to investigate how
well this dependency is reproduced by other correlations pre-
sented in Table 1.

For a single bubble rising with a constant velocity in the
stagnant water, the rise velocity can be calculated from the
equilibrium between the pressure force, gravity, and drag force.
If we neglect the gravity (which is much smaller than the
pressure force), we obtain

urise � �4

3
�
dbg

Cd
(27)

The values for the bubble rise velocity calculated from this
formula using correlations A to E are represented in Figures 3
and 6. It is seen from Figure 3 that correlation A results in
values of the bubble rise velocity, which are considerably
overestimated for bubble diameters above 3 mm.

Not all publications which use this correlation specify ex-
plicitly the employed value for the bubble diameter, so that in
such cases it is unclear, whether or not the resulting relative
velocity between both phases lies in the region corresponding
to the measurements (for 2 mm 
 db 
 2.7 mm). Sommerfeld
et al. (1997), as well as Mudde and Simonin (1999), simulated
the locally aerated bubble column from Becker et al. (1994)
using a bubble diameter of db � 3 mm, which agrees with the
averaged bubble diameter measured in the underlying experi-
ment, but results (according to correlation A) in an overesti-
mated bubble rise velocity of about 29 cm/s. Delnoij et al.
(1997a) resort to a fictitious bubble diameter of 2 mm for the

Figure 5. Long-term averaged liquid velocity maps in the mid-depth plane of the bubble column of Figure 4.
LDA measurements (a) and simulations (b), comparison of measured (- - -) and calculated (———) 1-D liquid velocity profiles (c) from
Borchers et al. (1999). Comparison of liquid velocity profiles at different heights calculated with uslip

x � 20 cm/s (———) and with uslip
x �

25 cm/s (- - -) (d).

Figure 6. Terminal velocity urise of single bubbles in
stagnant water calculated from Eq. 27 for cor-
relations B to E (see Table 1).
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same test case to obtain a more realistic bubble rise velocity of
just 20.8 cm/s.

The application of correlations B and C in connection with
Eq. 27 results in a dependence of the bubble rise velocity on the
bubble diameter which lies in the area between the two exper-
imentally determined curves for the distilled and tap water.
However, this dependence is not very strong. In fact, for bubble
diameters 4 mm 
 db 
 7.8 mm, both curves predict terminal
rise velocities in a very narrow range between 23 and 24 cm/s
(Figure 6).

The result produced by correlation D is very surprising.
Although this correlation implies a very detailed representa-
tion, it results in a bubble rise velocity which is independent of
the bubble size, if the bubble diameter is greater than db �
2.27 mm and the restriction We � 8 applies. Insertion of Cd �
We/3 into Eq. 27 leads to the following expression for the
bubble rise velocity

urise � �4 4�g

|l
� 22.9

cm

s
(28)

The use of correlation E produces the same results not only for
bubble diameters above db � 2.27 mm, but for all bubble
sizes.

In summary we can state that, apart from correlation A, all
correlations examined above provide reasonable estimates for
the bubble rise velocity. However, the differences between the
resulting curves are marginal, and they exhibit little (if any)
dependence on the bubble diameter.

Remark. All correlations for the drag coefficient discussed
so far were tested only for the case of stagnant liquid, and it
remains unclear how well the different correlations approxi-
mate the drag force if the relative velocity between both phases
deviates from the terminal rise velocity of bubbles. A second
important uncertainty factor is introduced by the collective
behavior of bubbles in a swarm and its influence on the
resistance of individual bubbles. All correlations for the drag
coefficient discussed so far refer to the rise of isolated gas
bubbles. In a mathematical model, the influence of the bubble
swarm is usually taken into account by multiplying the drag
correlations derived for a single bubble by a correction factor
which depends on the local gas content (Morud and Hjertager,
1996; Tomiyama, 1998; Mudde and Simonin, 1999; Pan et al.,
2000). Unfortunately, the question as to whether the resistance
of a gas bubble in the swarm is higher or lower than that of a
single rising bubble is still largely unresolved (Schlueter and
Raebiger, 1998). Recent experimental evidence of Borchers
(2002) supports a correlation of Richardson and Zaki (1954),
which—in accord with physical intuition—suggests an in-
crease of the resistance with increasing gas holdup.

Added mass force

The drag force takes into account the interaction forces
between the liquid and bubbles in a uniform flow field under
nonaccelerating conditions. However, if the bubbles accelerate
relative to the liquid, part of the surrounding liquid has to be
accelerated as well. This additional force contribution is called
the “added mass force” and can be calculated from

Fam � �CamVb|l

Duslip

Dt

where the coefficient Cam corresponds to the volume fraction of
liquid which is accelerated with the bubble. Then, the expres-
sion for Fam represents nothing else but the mass of the
entrained liquid multiplied by the relative acceleration between
the two phases. Without the effect of the added mass, a bubble
released at the gas sparger would experience a very high
acceleration under the influence of Archimedes’ buoyancy. The
added mass increases the effective inertia of the gas bubble
considerably and delays the adjustment of its terminal rise
velocity.

Unfortunately in a system where both phases are accelerated
independently, the material derivative Duslip/Dt appears not to
be well defined. Most of the two-fluid models presented in the
literature use the approximation (see also Jakobsen et al., 1997)

Duslip

Dt
�

Dug

Dt
�

Dul

Dt
,

where the operator D/Dt denotes the total time derivatives in
two phases. If the motion of single gas bubbles in the Lagrang-
ian frame of reference is considered, the total derivative
Dug/Dt should be replaced by the bubble acceleration dug/dt
along its trajectory, leading to

Fam � �CamVb|l�dub

dt
�

Dul

Dt 	 (29)

Although the influence of the added mass is generally accepted
because of its physical plausibility, it is rather difficult to
estimate the value of the parameter Cam correctly. While the
theoretical investigations have so far been limited to oversim-
plified models, the experimental determination of this coeffi-
cient is complicated by the fact that, in the experiments per-
formed up to now, the influence of the added mass on the
measurement results was found to be extremely weak (Hsieh,
1988). The basic difficulty of the experimental determination
of the added mass coefficient lies in the fact that the influence
of the added mass force can be seen only when high frequency
fluctuations in the slip velocity occur (Drew, 1983). In the
experiment, it is, however, very difficult to adjust and to
analyze such changes reliably enough. These uncertainties ex-
plain why many different correlations for the coefficient Cam

can be found in the literature (see, for example, Jacobsen et al.,
1997). The overwhelming majority of authors, who consider
the added mass force in the simulations of bubbly flows, used
the value of Cam � 0.5 (Bhanu and Mazumdar, 1997; Jenne,
1999; Kuwagi and Ozoe, 1999; Lain et al., 1999; Mudde and
Simonin, 1999; Pan et al., 1997; Park and Yang, 1997; Smith
and Milelli, 1998).

In addition to the many different representations for the
added mass coefficient, it is also disputed whether the consid-
eration of the added mass force has any noticeable influence on
bubble flow simulation results. The assumption that the added
mass force can be safely neglected is based on the premise that
the gas bubble reaches its terminal velocity very fast. To show
this premise, we consider the ascent of a single gas bubble
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being initially at rest in a stagnant water of infinite extent. For
the sake of simplicity, we use correlation F (Eqs. 24 and 25) for
the drag coefficient. Because of ul � 0 and �p/� x � �|lg,
the (1-D) equation of motion for the gas bubble reads in this
case

d�mbub�

dt
� Vb|lg � mbg � CwVbub � CamVb|l

dub

dt
(30)

or

�1 �
|l

|g
Cam	 dub

dt
� �

Cw

|g
ub � �|l

|g
� 1	g (31)

Because of (|l/|g) � 1, it is obvious that the inertia and
gravity force terms can be neglected in comparison with the
added mass and the pressure force

Cam|l

dub

dt
� �Cwub � |lg (32)

The analytical solution of this equation with the initial condi-
tion ub (0) � 0 is

ub�t� �
|lg

Cw
�1 � e�Cwt/�Cam|l�� (33)

or, using |l � 1,000 kg/m3, g � 10 m/s2, Cw � 5 � 104

kg/m3 � s and Cam � 0.5

ub�t� � 0.2
m

s
�1 � e�100t� (34)

This means that the terminal rise velocity is already achieved
after less than one-tenth of a second. Since the relaxation time
of a gas bubble is as small as 0.01 s, added mass force would
only be visible if the velocity of the liquid phase along the
bubble trajectory exhibits high frequency oscillations. This
conclusion agrees with that of Drew (1983). One could think
here of the influence from turbulent fluctuations, in particular,
in the bubble swarm. However, these fluctuations are not
resolved in the framework of a two fluid model, since it
contains only averaged quantities.

The above conclusions are also supported by Jenne (1999)
who investigated the influence of the added mass force on the
distribution of the gas phase in a stirred tank reactor. Although,
in a mechanically agitated gas-liquid tank at a high rotation
frequency of impeller(s), the velocity field is subject to sub-
stantially higher fluctuations as in the case of bubbly-driven
flows, no qualitative and, hardly any quantitative, differences
between the simulations with and without the consideration of
the added mass force were observed (see Figure 60 in Jenne
(1999)).

Life force

If a rigid spherical particle moves in a nonuniform flow
field, additional forces perpendicular to the main flow direction

occur. These forces result from the asymmetric pressure dis-
tribution around the particle. The Saffman force is due to the
shear in the mean flow and is experienced by the solid particle
even if it doesn’t rotate. The Magnus force, on the other hand,
results from the asymmetric pressure distribution which fol-
lows from a particle rotation even if the flow field is uniform
and has no shear (far away from the particle).

There are many different representations for the sum of these
forces which is often called the “transversal lift force.” Since,
for bubble flow, the transversal lift force has been used to
influence the radial redistribution of the gas bubbles in a
vertically aligned flow field, the notions “radial” or “lateral lift
force” are also common. As in the case of the drag force, the
lift force can be calculated theoretically only in the simplest
cases. For the determination of the Saffman force, rigid spher-
ical particles at low Reynolds numbers are considered, and the
Magnus force is calculated under the assumption of ideal
inviscid flow conditions. However, in bubbly flows the phe-
nomenon is much more complex (formulation of an asymmet-
ric wake, bubble deformation, and flow inside the bubble) and
admits no accurate theoretical description. A straightforward
transfer of the expressions derived under the idealized assump-
tions for the simulation of real bubbly flows is, therefore, not
justified.

On the one hand, for the range of Eötvös-, Morton-, and
Reynolds numbers relevant for the bubble flow, there currently
exists no unambiguous experimental evidence or theoretical
proof for the existence, the direction, and the magnitude of the
radial force. On the other hand, most formulations of the radial
force have a very strong influence on the simulation results.
Therefore, the radial force can be abused for achieving an
improvement of simulation results through a nonphysical ad-
justment of parameters contained in the radial force represen-
tation.

We would like to illustrate this with some examples. Let us
consider the representation for the lift force, which was de-
duced by Auton (1987), as well as Thomas et al. (1983), for the
case of a potential flow around a spherical particle and which
is used in most articles on the simulation of bubbly flows which
consider the lift force

Fl � �ClVb|l�ub � ul� � �� � ul� (35)

The references cited adopt a value Cl � 0.5 for the lift
coefficient, which has also been used by Delnoij et al., 1997a,b,
1999; Kuwagi and Ozoe, 1999; Murai and Matsumoto, 1998;
Smith and Milelli, 1998. Other authors however use much
smaller positive values (such as Cl � 0.01 in Lahey (1990), as
well as negative (!) values between �0.5 and �3.0, in order to
obtain agreement between simulation and experiment.

The effect of the lift force on the bubble trajectory can be
most simply illustrated if we assume an axisymmetric devel-
oped flow in the central region of a vertical cylinder. In this
case only the axial component of the liquid velocity (ul

x) differs
from zero and can vary only in the radial direction. Therefore,
we can calculate the radial component of the lift force from

Fl
r � �ClVb|l�ub

x � ul
x�

�ul
x

�r
. (36)
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Here ub
x and ul

x stand for the axial velocity of the bubble and of
the liquid phase. Furthermore, if the axial velocity of the liquid
phase decreases towards the wall, we have

�ul
x

�r

 0 (37)

Since the inequality

ub
x � ul

x � uslip
x � 0 (38)

is valid, we can conclude from Eq. 36 that the direction of the
radial force is related to the sign of Cl: for Cl � 0 it acts
towards the wall, while, in the case Cl 
 0, it drives the
bubbles to the center of the cylinder. Therefore, either positive
or negative values for the lift coefficient have been used,
depending on whether the redistribution of the radial gas
holdup profile towards the wall or towards the cylinder center
was needed for a better agreement between the simulation
results and experimental data.

In the case of an enforced upward flow in a vertically aligned
pipe some experimental data show that the gas holdup profiles
exhibit a pronounced maximum near the wall in the developed
flow region, even if the gas is fed into the pipe uniformly over
the entire cross section (Liu, 1989; Serizawa et al., 1986; Wang
et al., 1987). To achieve a good agreement with the measure-
ment data, one needs to reshape the initially flat gas holdup
profile by means of a lift force, which shifts the gas bubbles
towards the wall. Accordingly, a positive value for the lift
coefficient is used in this case.

The corresponding experiments are usually performed in
long pipes with diameters of just a few centimeters, and the
liquid velocity in the center of the pipe typically lies in the
range of 1–2 m/s. In this case the application of the theoreti-
cally deduced value for the lift coefficient (Cl � 0.5) would
lead to a radial force corresponding to a horizontal slip velocity
of 10–20 cm/s. Therefore a substantially lower value of Cl is
used for the simulation of bubbly flow in a pipe. For instance,
Lopez de Bertodano et al. (1994b) suggest values between 0.02
and 0.1.

In contrast, in the case of a uniformly aerated bubble
column, the gas holdup profiles exhibit a maximum not in the
wall region, but in the center of the reactor (Grienberger, 1992;
Hills, 1974). This means that the gas holdup profile (which is
flat directly above the gas sparger) shifts towards the central
axis of the bubble column. Since a positive value of the lift
force coefficient would lead to exactly the opposite trend, the
sign of the coefficient has been reversed, to achieve a better
agreement with the measured gas holdup profiles.

Because the change of the axial velocity in the radial direction
in a bubble column is about one order of magnitude smaller than
in the vertical pipe flow discussed above, the absolute value of the
lift coefficient used in the simulations of bubble columns has to be
essentially higher than in the case of the pipe flow and was set to
�0.5 by Boisson and Malin (1996), Grienberger and Hofmann
(1992), and Torvik and Svendsen (1990), to �1.5 and �2.0 by
Jakobsen et al. (1997), and even to �3.0 by Svendsen et al.
(1992). These values of the lift coefficient would correspond to a
horizontal slip velocity approximately 2 to 6 cm/s directed to the
center of the column. The strong influence of the value employed

becomes evident from Figure 5.8 from Grienberger (1992): while
the liquid velocity in the center of the column calculated with a
value Cl � �0.1 equals to 16 cm/s, the lift coefficient Cl � �0.7
results in an almost four times higher axial velocity of 60 cm/s.

Results of some experimental investigations as well as re-
sults of the direct numerical simulation of a single bubble rising
in a shear flow reveal that a transversal force acting on the
bubble can develop and that the direction of this force depends
on the bubble size (Esmaeeli et al., 1994; Tomiyama et al.,
1995b). Therefore, Tomiyama et al. (1995b) propose the fol-
lowing formulation for the lift coefficient, which depends on
the bubble diameter

Cl � �0.04Eö � 0.48 (39)

For air bubbles in water, this corresponds to a negative sign
for bubble diameters greater than 9 mm; the value Cl � �0.5
corresponds to a bubble diameter of approximately 13 mm. It
should be noted, however, that the direct numerical simula-
tions, as well as the experiments, were performed for the
Morton numbers which lie in the range of �5 
 log(Mo) 

�3. Therefore, they apply to fluids, which have a substantially
higher viscosity than water. The sign change of the lift coef-
ficient is justified by the fact that, for large bubbles, the wake
develops symmetrically due to bubble deformation, so that the
interaction between the shear flow and the wake shifted to the
wall results in an additional transverse force; this acts in the
direction opposite to the “classical” lift force. However, it is
very unlikely that this argumentation retains its validity also for
large air bubbles in water, since, for air bubbles with diameters
above 9 mm, no stable, laterally shifted bubble wake exists.
Many experimental results show that even bubbles with sub-
stantially smaller diameters are characterized by an unstable,
dynamic, periodically separating wake (see, for example Fan
and Tsuchiya, 1990).

The examples given above reveal a great deal or arbitrariness
for the incorporation of the radial force into bubbly flow
simulations. This practice has been further compromised by the
fact that the lift force was applied mainly in such cases, where
it leads to a better agreement with the measurements. This has
been the case for buoyancy driven bubble flow in a uniformly
aerated bubble column, simulated with steady-state balance
equations. However, the need to assume a lateral lift force
disappears if the model equations are solved dynamically. The
unsteady vertical flow structure then leads to a long-time av-
eraged flow with a higher gas holdup in the column center,
resulting in the well-known upflow in the center and downflow
at the walls (Devanathan et al., 1995; Sokolichin et al., 1997).

On the relevance of different forces

A particular force should be regarded as a relevant force for
the mathematical model, only if the following two conditions
are satisfied: (1) the existence of this force is experimentally
verified; (2) the consideration of this force in the mathematical
model has an important influence on the simulation results.

If a given force fulfills both conditions, it should be further
investigated whether a reliable model for its numerical com-
putation is available.

The inertia force [d(mbub)]/dt, the gravity Fg, and the
added mass force Fam, whose existence is undisputed, have
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shown to exert virtually no influence on the simulation results.
Since the consideration of these forces in the mathematical
model does not modify the simulation results, the additional
computational effort can be saved.

The lift force Fl belongs to the class of nonrelevant forces of the
second type: its consideration in the mathematical model has a
very strong influence on the simulation results, whereas its exis-
tence and sign are still not validated for realistic bubble sizes.

The only two relevant forces according to the definition
given above are the pressure force and the drag force. Without
the action of the pressure force, a bubble released in stagnant
water would not rise, while, without the effect of the drag
force, the released bubble would accelerate infinitely.

In summary we can state that those mathematical models,
which are limited to the consideration of the pressure force and
the drag force, involve all forces previously found to be un-
disputed and essential.

With this conclusion, we can come back to the momentum
balance of the gas bubble. If only the pressure force and the
drag force are considered in Eq. 19, then the slip velocity uslip

between the bubble and the liquid phase can be calculated
directly from the relationship 0 � Fp 
 Fd

3

4

Cd

db
�l�uslip�uslip � ��p (40)

from which the bubble velocity ul can be determined as

ub � ul � uslip (41)

Modeling of the bubble path dispersion

If we take a look at a snapshot of a bubbly flow in a locally
aerated bubble column (see, for example, Figure 4, left), we see
that the width of the rising bubble swarm increases with the
height of the column. Thus, a radial mixing takes place in the
gas phase. An axial mixing in the gas phase also takes place,
but its effect cannot be recognized because the convective
transport dominates in the vertical direction.

The bubble path diffusion results from the interactions be-
tween the bubbles on the one hand, and from the influence of
the liquid phase turbulence on the other hand. The relative
motion of the bubbles in the liquid leads to strong fluctuations
of the liquid velocity in the direct neighborhood of individual
gas bubbles and particularly inside the bubble wake. These
fluctuations affect the behavior of the neighboring bubbles.
Smaller bubbles can be accelerated in the wake of the large
bubbles, and others are pushed aside. If the flow has a global
turbulent character, then the diffusive effects, which result
from the bubble interactions, are additionally enhanced by the
turbulent eddies in the liquid phase. For relatively low gas
holdups and small bubble sizes, this turbulent mixing effect is
often even more pronounced than the diffusion caused by
bubble interaction.

The question arises concerning where the bubble dispersion
has to be considered in the model equations. The only plausible
answer is: in the gas phase continuity Eq. 18. One has to realize
that so far we have only talked about the (individual) bubble
rise velocity ub. Compared to ub, the gas phase velocity ug is
a phase-averaged quantity which may contain an additional

component udrift. This contribution called the “drifting veloc-
ity” by Simonin and Violet (1990) depends on the local gra-
dient of the volume fraction of the gas phase.

To explain this, we consider the rise of a bubble plume
(Figure 7). Focusing at the magnified volume element on the
righthand side border of the plume, we look at the bubble
movement due to turbulent lateral fluctuations of gas/liquid
volume elements. Due to continuity, each volume element
moving to the right has to be compensated by a volume element
of equal size moving to the left, so that the net volume flux is
zero. However, since the gas or liquid fractions of the exchange
elements are different, the turbulent exchange results in a net
flux of gas from left to right and a corresponding net flux of
liquid from right to left.

The exchange flux can be transformed into the above men-
tioned drifting velocity, which, according to Simonin and Vi-
olet (1990), can be calculated from

udrift � �Dgl
turb �

1

�g
��g (42)

Dgl
turb stands for the turbulent diffusion tensor. It is usually

assumed that this tensor has a diagonal form, whereby all
diagonal elements are equal and can be calculated as

�Dgl
turb�ii �

1

Sc
�

l

turb

|l
(43)

Here, 
l
turb denotes the turbulent viscosity of the continuous

phase. Sc is the Schmidt number for the turbulent transport and
corresponds to the ratio of the velocity fluctuations of both
phases. It is experimentally proven that, in the case of gas-
liquid flows, the velocity fluctuations of both phases have the
same order of magnitude because the light gas bubbles follow
the liquid fluctuations immediately (Serizawa, 1974). There-
fore, the value Sc � 1 is usually taken for the turbulent
Schmidt number (Jenne, 1999; Torvik and Svendsen, 1990).

The phase-averaged gas velocity is now the sum of the
bubble velocity plus the drift velocity

Figure 7. Dispersion of a locally aerated bubble plume
(left), caused by the turbulent exchange of
equal size gas/liquid volume elements.

36 AIChE JournalJanuary 2004 Vol. 50, No. 1



ug � ub �

l

turb

|l

1

�g
��g. (44)

If we insert it into the continuity equation for the gas phase (Eq.
18), we obtain the following convection-diffusion equation,
which describes both the convective transport and the turbulent
mixing in the gas phase

���g|g�

�t
� � � ��g|gub� �

�

�xi
�|g

|l
� 
l

turb �
��g

�xi
	 (45)

If the full continuity Eq. 6 of the liquid phase would be used,
a similar turbulent mixing term had to be added in order to
retain global continuity. However, since we already neglected
variations of �l (Eq. 7), no further adjustment is necessary.

Modeling of Turbulence

The modeling of turbulence in the continuous phase (the
term Tl

turb in Eq. 14) is one of the main unresolved problems
within the two-fluid approach. In the majority of publications
on numerical simulations of turbulent bubbly flows, the stan-
dard k-� model developed for single-phase flows has been
employed.

k � � turbulence model

The standard k-� turbulence model makes use of the
Boussinesq hypothesis (Boussinesq, 1877), according to which
the following representation for the turbulent stress tensor Tl

turb

can be applied

�Tl
turb�ij � 
l

turb���ul�i

�xj
�

��ul�j

�xi
	 �

2

3
|l�ijk (46)

The turbulent eddy viscosity 
l
turb is calculated from


l
turb � 0.09 � |l

k2

�
(47)

where k is the turbulent kinetic energy, and � is its dissipation
rate, calculated from the well known k and � equations as
specified, for example, in Ferziger and Peric (1996). The gen-
eral applicability of this model to nonstationary two-phase
flows is, however, disputed.

In some contributions no turbulence model is used at all and
the influence of this term in the momentum balance equation is
simply neglected. The main argument in these cases is that the
standard turbulence models, developed for steady-state single-
phase flow, will overestimate the value of the effective viscos-
ity and, therefore, completely dampen the transient character of
the flow rather than suppress merely the small-scale turbulent
fluctuations. As shown by Sokolichin and Eigenberger (1999),
this argument seemed to be true if a 2-D k-� turbulence model
was used to simulate the dynamics of a locally aerated flat
bubble column similar to that presented in Figure 4. In this case
a grid independent solution could be computed on a relatively
coarse grid, but the dynamic nature of the flow was completely
suppressed by the strong turbulent viscosity. Neglecting turbu-

lent viscosity led to a dynamic solution in close agreement with
the experiments, but this solution was not grid-independent.
Only after a full 3-D turbulent model was used did the simu-
lation results show a good agreement with experiments. The
explanation was that in a flat bubble column turbulence is
reduced substantially if the true depth of the column is consid-
ered as compared to the 2-D case with unlimited column depth.

Borchers et al. (1999) used the 3-D-standard k-� model for
a series of test cases of steady-state and dynamic turbulent
bubbly flows in a locally aerated bubble column with different
aspect ratios. In all test cases a very good agreement with
experiments was achieved. It is, however, obvious that the
general applicability of the 3-D k-�-turbulence model to the
dynamic simulation of bubbly flows is questionable since it
completely neglects the turbulence induced by the gas phase.

Bubble induced turbulence

In the test cases of locally aerated flat bubble columns
mentioned above, the gas phase occupied only a small part of
the reactor. This may be the reason why the influence of the
bubble-induced turbulence could be neglected. Figure 8 pre-
sents a test case of a flat airlift loop reactor with 2.0 m height,
0.5 m width, and 0.08 m depth. A central inner wall (1.45 m
height, 0.03 m width located 16 cm above the bottom) sepa-
rates the two main parts of the bubble column. The liquid
height equals 1.9 m. The gas is dispersed by a frit sparger
located 15 cm from the lefthand side of the reactor, the gas-
flow rate equals 4 L/min. A photo of the more or less steady
bubble distribution and the LDA-measurements of the circu-
lating liquid velocities in the mid-depth plane are presented on
the lefthand side of Figure 8. The corresponding (grid inde-
pendent) simulation results, obtained with the 3-D, dynamic
model (Eqs. 13–15, 17, 41, 45, 46, 47) under the assumption of
a constant slip velocity of 20 cm/s and application of a standard
k-� model are shown in the center of the figure.

Although the measured and the calculated velocity fields
look quite similar, there are some important differences be-
tween the experimental results and the simulation. It can be
seen that the diffusion in the gas phase is strongly underesti-
mated, so that the gas bubbles accumulate exclusively near the
left reactor wall, while a more uniform distribution is observed
in the experiment. As a result of this discrepancy, the vertical
velocities of the liquid phase are strongly overestimated in the
upper part of the riser. A comparison between the measured
and the calculated profiles of the turbulent kinetic energy also
reveals substantial differences. In this case the gas phase oc-
cupies a major part of the riser cross-section, so that the
bubble-induced turbulence could be of the same order of mag-
nitude as the shear-induced one. The neglection of this effect in
the model obviously leads to an underestimation of the turbu-
lence intensity in the simulation.

The development of mathematical models for the bubble-
induced turbulence is still at its infancy. In principle, the
conservation equations for the turbulent kinetic energy and its
dissipation rate in a two-phase flow can be derived in analogy
to the single-phase case (Elghobashi and Abou-Arab, 1983;
Kataoka and Serizawa, 1989). However, the lack of sufficient
knowledge of the physical processes makes the postulation of
closure relations very difficult. As the investigations of gas-
solid flows showed, the presence of solid particles can lead
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either to a reduction or to an increase of the turbulent kinetic
energy in the continuous phase, depending on the specific flow
conditions. In gas-liquid flows, the interaction of the turbulent
eddies with the mobile bubble surface constitutes another im-
portant mechanism whose experimental studies have been very
scarce (Banerjee, 1990). The large bubbles are comparable in
size with the energy-carrying eddies, while their dispersive
behavior has not yet been sufficiently investigated. Therefore,
many of the models available in the literature are contradictory
and the model parameters are mostly fitted to the particular
problem under consideration.

In the following some of the most popular models for the
bubble-induced turbulence will be presented and their influ-
ence on the solution of the test case from Figure 8 will be
discussed.

The simplest model for the consideration of the bubble
influence on the liquid turbulence is due to Sato and Sekogu-
chi (1975), as well as to Sato et al. (1981). The stress tensor
Tl

turb is modeled by Eq. 46, where the effective viscosity is
split into a shear induced term 
l,SI

turb and a bubble induced
term 
I,BI

turb


l
turb � 
l,SI

turb � 
l,BI
turb (48)


l,SI
turb is calculated according to Eq. 47 from the quantities k and

�. The bubble-induced viscosity is assumed to be proportional
to the local gas holdup and the slip velocity


l,BI
turb � 1.2

Db

2
�g|l�uslip� (49)

In order to estimate the amount of the so defined bubble-
induced viscosity, we insert the sample values Db � 5 mm,
|l � 1,000 kg/m3 and �uslip� � 20 cm/s into the expression 49,
leading to


l,BI
turb � 0.6 � �g� kg

m � s�
For a gas holdup of about 5% (this corresponds to the maxi-
mum value of gas volume fraction in the lower part of the
riser), the bubble-induced viscosity equals


l,BI
turb � 0.03� kg

m � s�.

For the test case examined here, this bubble-induced viscosity
is almost two orders of magnitude smaller than the shear-
induced part of the effective viscosity. Therefore, it can hardly
have any influence on the simulation results. Jenne (1999)
examined the influence of Sato’s model on the simulation of an
aerated stirred tank reactor and reported differences of as much
as three orders of magnitude between the bubble-induced and
the shear-induced parts of the turbulent viscosity, although, in
his test case, the values of the gas holdup exceed the 10% level
in some parts of the apparatus.

Another approach to the modeling of bubble-induced turbu-
lence is due to Arnold et al. (1988). It is based on the assump-
tion that the influence of the gas bubbles on the liquid turbu-
lence results primarily from the velocity fluctuations, which
originate from the displacement of liquid by the rising bubbles.
Since, for continuity reasons, such a displacement takes place
in the surrounding fluid even if the bubbles rise in a stagnant
medium, these fluctuations cannot be interpreted as turbulence
in the conventional sense. Therefore, the notion “pseudo-tur-
bulence” is used instead. A theoretical estimate of the influence
of these fluctuations can be derived under the assumption of a
potential flow around a group of spheres.

If one further assumes a linear superposition of the shear-
induced single-phase turbulence and the bubble-induced

Figure 8. Flat column airlift loop reactor, 4 L/min gas flow.
Experiments and simulation results obtained with standard k-� model without consideration of the bubble-induced turbulence. From left to
right: image of the bubble swarm, LDA-measurements of the flow map in the mid-depth plane, calculated gas holdup and flow map in the
mid-depth plane, comparison of measured (———) and calculated (- - -) liquid velocity, and turbulent kinetic energy profiles at different
heights.
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pseudo-turbulence, then the stress tensor Tl
turb can be expressed

as

Tl
turb � Tl,SI

turb � Tl,BI
turb (50)

where the shear-induced part of the stress tensor is modeled
according to Eq. 46 and the bubble-induced pseudo-turbulence
is represented through

Tl,BI
turb � ��g|l� 1

20
uslipuslip �

3

20

uslip
2I� (51)

I denotes here the identity tensor. Lopez de Bertodano et al.
(1994a) applied this model in combination with Sato’s ap-
proach to the simulation of a bubbly flow in a vertical pipe and
obtained a remarkable improvement, as compared to simula-
tions performed with the single-phase turbulence model.

For our test case, however, the amount of bubble-induced
turbulence calculated with Arnold’s model is considerably
underestimated. Equation 51 implies that the bubble-induced
turbulent kinetic energy can be expressed as follows (Lopez de
Bertodano et al., 1994a)

kBI �
1

4
�g�uslip�2. (52)

For the slip velocity of approximately 20 cm/s, this corre-
sponds to

kBI � 0.01�g�m2

s2 � (53)

For �g � 5%, this is a factor 20 smaller than the bubble-
induced turbulent kinetic energy of 0.01 m2/s2, needed for a
reasonable agreement between measured and simulated kinetic
energy for the example of Figure 8.

We have seen that both Sato’s model and Arnold’s model
strongly underestimate the bubble-induced turbulence in a
number of test cases. Another disadvantage of these ap-
proaches consists in their local effect, because they consider
the increase of the turbulence intensity only in parts of the
reactor where the gas phase is actually present. In reality, the
turbulence induced by the bubbles at some given point can
spread and affect regions further away from the turbulence
source.

The third approach to be discussed for the modeling of
bubble-induced turbulence allows for the convective and dif-
fusive transport of turbulent kinetic energy. This model incor-
porates the influence of the gas bubbles on the turbulence by
means of additional source terms in the balance equations for
k and �.

The additional source term in the k-equation is taken to be
proportional to the product of the drag force and the slip
velocity between the two phases, as proposed by Kataoka and
Serizawa (1989). Under the assumption of an equilibrium be-
tween the pressure force and the drag force, this term can be
represented as follows

Sk � �Ck�g�p � uslip (54)

Since the slip velocity and the pressure gradient are oppositely
directed, this term is always positive if the model constant Ck

is greater than zero.
The corresponding source term in the �-equation is usually

modeled as

Figure 9. Same as Figure 8, however, simulated with additional source terms (Eqs. 54 and 55) for consideration of the
bubble-induced turbulence Ck � 0.83, C� � 0.13.
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S� � C� �
�

k
Sk (55)

and is also positive. This means that the contribution of the
bubbles both to the production and to the dissipation of the
turbulent kinetic energy is positive. The superposition of both
effects can result in an increase, as well as in a decrease, of the
turbulence intensity compared with the single-phase turbulence
model.

In many test cases it is possible to obtain a very good
agreement between the experimental data and simulation re-
sults by fitting the values of the model constants Ck and C�. A
better prediction of the measured turbulence intensity is usually
accompanied by a better agreement between the measured and
calculated liquid velocities.

Also, in our test case the application of this model with
(adapted) values of Ck � 0.83 and C� � 0.13 results in a
much better agreement with the experimental data for the
profiles of the turbulent kinetic energy, compared to the sim-
ulations without bubble-induced turbulence (compare Figure 9
and Figure 8). The higher values of the turbulence intensity
lead to a rise in the turbulent diffusion of the gas phase, causing
a better agreement between the calculated and the observed gas
holdup distribution. The accumulation of the gas content in the
center of the riser entails a shift of the velocity peaks in the
same direction, so that the correspondence between the mea-
sured and computed velocity profiles also improves substan-
tially.

This example demonstrates the importance of a good pre-
diction of the bubble-induced turbulence. Unfortunately, the
“optimal” parameter values, determined by fitting of experi-
mental results, differ strongly for each particular case. If the
gas flow in the example of Figure 9 is educed from 4 L/min to
3 and 2 L/min, the optimal values for Ck and C� change as
shown in Table 2. In all cases a good agreement has been
obtained between measurements and simulations (Figure 10),
but a clear tendency for the relation of the Ck, C�-values from
the flow characteristics is not obvious. This agrees with the

published literature where the model constants vary between
0.01 and 1 for Ck (Boisson and Malin, 1996; Kuo et al., 1997)
and between 1 and 1.92 for C� (Bhanu and Mazumdar, 1997;
Kuo et al., 1997).

Uniformly Aerated Bubble Columns

The appropriate modeling and simulation of uniformly aer-
ated (“empty”) bubble columns still presents the biggest chal-
lenge for bubble flow modeling. In the locally aerated bubble
columns discussed so far, gas was only present in a part of the
column and the local gas volume fraction seldom exceeded 2%.
This is in contrast to uniformly aerated bubble columns which
often are operated at substantially higher gas content, while the
bubbles are spread over the whole column cross section.

A particular challenge is the modeling of bubble columns in
the industrially important heterogeneous or churn turbulent
regime, which results for high gas throughput (Deckwer,
1992). Small gas bubbles then tend to coalesce to large bubbles
which accumulate in the middle of the column and create a
strongly turbulent, dynamic flow structure with large 3-D vor-
tices of toroidal shape (Chen et al., 1994). Since these vortices
form and move rather randomly, the flow has a strongly chaotic
character. So far, mostly long-time averaged flow profiles, but
no detailed information about the vortical dynamics, is exper-
imentally available.

The long-time averaged liquid flow velocities in empty
and (more or less) uniformly aerated bubble columns result
in a so-called gulf stream flow structure similar to Figure 5,
where liquid moves upstream in the column center and

Figure 10. Flat column airlift loop reactor with 2 L/min.
Comparison between experiment and simulation with bubble-induced turbulence Ck � 1.00, C� � 1.2, from left to right: bubble image,
center plane flow map, gas holdup, center plane flow map, axial velocity (ul

x) profiles and turbulent kinetic (k) energy profiles at different
heights (- - - simulated, ——— measured).

Table 2. Optimal Bubble Induced Turbulence Parameters
Ck, C� of Eqs. 54 and 55 for the Loop Reactor Example with

Different Gas Flow

Gas Flow Ck C�

2 L/min 1.00 1.20
3 L/min 0.84 0.36
4 L/min 0.83 0.13
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downstream at the walls (Hills, 1974; Devanathan et al.,
1995; Mudde et al., 1997). However, in these long-time
averaged results all the strong vortical fluctuations, where
local velocities may temporarily exceed the long-time aver-
aged velocities manifold, are leveled out. This means that
information about the true local medium to large-scale mix-
ing behavior which may be essential for an appropriate
reactor simulation (see Bauer and Eigenberger, 2001) is no
longer available.

During the past few years, many contributions concerning
the detailed hydrodynamic modeling of empty bubble columns
have been published. Whereas earlier work (see Jakobsen et al.,
1997 for reference) tried to use 2-D steady-state models with
cylindrical coordinates, it has meanwhile been generally ac-
cepted that a 3-D unsteady-state model is required to capture
the important flow and mixing characteristics. We would like
to refer in particular to the work of Pfleger and Becker (2001),
who used a 3-D dynamic simulation with a k-� turbulence
model and bubble induced turbulence to model empty bubble
columns.

In their results they considered empty tube gas velocities
between 0.15 and 2 cm/s. The bubble column was uniformly
aerated over the inner 80% of the bottom surface. Bubble
induced turbulence (BIT) was modeled using Eqs. 54 and 55
with Ck � 1.0 and C� � 1.92. In all cases the simulations

predicted a strongly instationary vortical flow behavior. The
long-time averaged velocities agreed well with the measure-
ments. It has to be noted, however, that the authors neglected
turbulent dispersion in the gas phase completely.

To study the influence of turbulent dispersion together with
the influence of the BIT-parameters on their results, we per-
formed a number of simulations, the details of which are
specified in Table 3. In all cases an empty tube gas velocity of
1.6 cm/s was assumed. The dimensions of the cylindrical
bubble column studied were 90 cm in height and 15 cm in
diameter and the aerator was assumed to cover 80% of the
bottom surface. A rectangular grid with 180 � 30 � 30 points
mapping the circular cross section was used.

Case a is a simulation with the turbulent k-�-model without
bubble induced turbulence. As in Pfleger and Becker (2001), no
turbulent gas dispersion was considered. Strongly instationary
hydrodynamics resulted (Figure 11a) with a large upward liq-
uid flow in the column center as a result of the gas accumu-
lating predominantly near the column axis. This is clearly
visible in the snapshot profiles of gas holdup in Figure 12a.

If the influence of turbulence is not only considered in the
effective viscosity but also in the turbulent gas dispersion, the
dynamic flow character gets almost lost (Figure 11b). The
liquid velocity fluctuations over the sparger now die out
quickly. This is a consequence of the strong turbulent gas

Table 3. Definition of 4 Test Cases and The Maximum Value of the Long-Time Averaged Liquid Velocity in the Center of
Empty Bubble Column

Case Turbulence Model Turbulent Dispersion Bubble Induced Turbulence Ck C� Umax

a k-� No No — — 17.2 cm/s
b k-� Yes No — — 4.2 cm/s
c k-� Yes Yes 1.0 1.2 0.002 cm/s
d k-� Yes Yes 1.0 1.92 12.3 cm/s

Figure 11. Time snapshot of liquid flow in the center
vertical cross-section of a uniformly aerated
bubble column for test cases a–d (s. Table 3).

Figure 12. Time snapshot of gas profiles at different
heights in the center vertical cross-section of
a uniformly aerated bubble column for test
cases a–d (s. Table 3).
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dispersion, which leads to almost flat gas holdup profiles in the
middle and upper part of the column (Figure 12b). As a result,
the liquid velocity maximum in the column center decreases
from 17.2 cm/s to 4.2 cm/s (Figure 13). If bubble induced
turbulence according to Kataoka and Serizawa (1989) with the
same BIT-parameters as in Figure 10 (Ck � 1, C� � 1.2) is
used, the turbulent viscosity in the column center rises from
about 
l

turb � 1.5 to 3.8 [kg/m � s] and the resulting increase of
turbulent gas dispersion leads to a completely stationary flow
profile (Figures 11c and 12c).

In this case—contrary to the flat bubble column of Figure
10—the bubbles should therefore have a dampening effect on
the turbulent viscosity. This can be modeled if a BIT-parameter
of C� � 1.92, as in the work of Pfleger and Becker (2001), is
used in Eq. 55. The turbulent viscosity now decreases to about

l

turb � 0.3 [kg/m � s]. In spite of the fact that the gas holdup
profiles (Figure 12d) are considerably flatter than in Case a, the
reduced turbulent viscosity results in strongly dynamic flow
profiles which extend over the total height of the column and
agree well with visual observations (Figure 11d). Figure 13
shows that the maximum of the column center velocity now
decreases from 1.72 cm/s (Case a) to 12.3 cm/s (Case d).

The examples show that different sets of model assumptions
and model parameters may result in dynamic flow structures
with similar long-time averaged velocity profiles. The detailed
dynamic flow structures, however, can be remarkably different.
This was already demonstrated by Sokolichin et al. (1997),
who showed, for a uniformly aerated flat bubble column, that
strongly different dynamic flow patterns may result in quanti-
tatively similar long-time averaged flow profiles. This limits
the use of long-time averaged flow profiles for the validation of
bubble flow models.

As a consequence, it can be stated that the proper modeling
of turbulent viscosity and turbulent bubble dispersion in bubbly
flows requires more detailed experimental and theoretical at-
tention. Experimentally, hardly any detailed information for
uniformly aerated bubble columns, which can be used for
turbulence model validation, is presently available. Since hy-

drodynamics in these bubble columns is both in stationary and
turbulent, velocity fluctuations result both from local turbu-
lence and from medium- and large-scale vortices. Appropriate
models should, therefore, consist of a large-eddy-simulation
approach, where the statistical turbulence model accounts for
the short-time averaged velocity fluctuations, while the large
eddies are resolved by the simulation. This requires that, ex-
perimentally, a separation between the short-time turbulent
fluctuations and the fluctuations caused by larger-scale vortices
also has to be made. Presently, most experimental results
determine fluctuations only around the long-time average ve-
locity. They can, therefore, not be used for turbulence model
validation since the respective values of turbulent kinetic en-
ergy differ by almost one order of magnitude (Mudde et al.,
1997). Only recently, some attempts have been made to look
deeper into the structure of the liquid flow field (Mudde and
van den Akker, 1999; Kulkarni et al., 2001).

Conclusions

In all cases where a flow is caused by the injection of gas
bubbles into a liquid, the main flow driving force results from
local density differences of the gas-liquid mixture, that is
differences in the local gas holdup. Like any buoyancy driven
flow, such a flow situation is highly unstationary and charac-
terized by a spectrum of fluctuating vortices of different size.
Its mathematical representation, therefore, requires to take the
full 3-D, dynamic model equations into account.

The numerical solution of these detailed model equations,
however, requires such a computational effort that up to now
the detailed simulation and model-based design of gas-liquid
reactors with bubbly flow like bubble columns or bubble col-
umn loop reactors has been severely impeded. It is, therefore,
of prime importance to reduce the computational effort by
reasonable simplifications of the hydrodynamics model.

In this contribution we discussed the two-fluid continuum
approach where each volume element contains a mixture of gas
and liquid, the mean density of which varies from element to
element. Like in other buoyancy driven flows, the Boussinesq
approximation for the momentum balance of the gas/liquid
mixture proves to be reasonable. The mixture density changes
are then neglected in all momentum terms and only considered
in the buoyancy term. In addition any displacement of liquid by
gas was neglected in the liquid continuity equation. The result-
ing model for the hydrodynamics of the gas/liquid mixture is
similar to a single-phase flow model and can be solved effi-
ciently with the respective well established iterative solution
procedure. The validity of these simplifications has been
proved for several examples by comparison with detailed sim-
ulation results.

In the above solution procedure the change of the local
gas holdup has to be described by the solution of the
gas-phase continuity and momentum equations. The latter
requires the specification of the interaction forces between
gas and liquid. Starting from the rise velocity of single
bubbles, the pressure force and the drag force have been
identified as most important. The added mass force proved
to be negligible since the steady-state rising velocity for
normal size bubbles in water is established within millisec-
onds. For the different lift forces, the literature provides
only contradictory results. For buoyancy driven bubbly flow,

Figure 13. Long-time averaged liquid velocity profile at
the half height of a uniformly aerated bubble
column for test cases a, b and d (s. Table 3).
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lift forces have so far been used primarily to adjust steady-
state, 2-D simulation results to experiments. Since 3-D,
dynamic simulations did not require an adjustment through
additional lift forces, it is concluded that they are not es-
sential for the simulation of the buoyancy driven bubbly
flow. Since they are able to change the flow structure sub-
stantially, they should be omitted, as long as no clear ex-
perimental evidence of their direction and magnitude is
available.

Many different correlations of rising bubbles exist. For the
best studied system, air in water, most correlations agree with
the experimental observation that, for bubble diameters be-
tween 2 and 8 mm, the bubble slip velocity is fairly constant.
Since, in addition, the resulting flow structure is not very
sensitive to the slip velocity, a constant slip velocity of about
25 cm/s proves to be a reasonable approximation for air/water
bubbly flow. The favorable experimental evidence of almost
constant slip velocity also is a libration from the necessity to
take bubble coalescence or dispersion into account as long as
we stay in the homogeneous flow regime and no large bubbles
as in churn turbulent flow are formed, and if only the flow
pattern is of interest.

In the examples considered, dispersion of two different origins
plays a crucial role. One cause of dispersion results from the
numerical discretization of spatial gradients. Of particular concern
are the convection terms in the continuity and momentum bal-
ances, if they are discretized with a common first-order upwind
scheme. An (almost) dispersion free TVD discretization has to be
used instead to prevent artificial numerical dispersion.

Contrary to the unwanted (while physically not justified)
numerical dispersion, some physical dispersion of gas and
liquid is brought about by the small-scale turbulent vortices.
Since these vortices are too small to be simulated by the
two-fluid approach, their influence has to be modeled by a
turbulent diffusion mechanism. Simulation results show that
the degree of diffusion of bubble plumes is essential for the
resulting flow structure. This is again a characteristic conse-
quence of the buoyancy driven flow.

Since bubble path diffusion is related to the turbulence, this
leads to the important question of how turbulence in bubbly flows
should be modeled. Presently, this remains the main open question
in gas/liquid bubbly flow modeling. In cases when only a smaller
part of the column was aerated, the standard k-�-model for the
liquid phase led to surprisingly good agreement between simula-
tion and experiment. For more uniformly aerated systems, how-
ever, an additional turbulence effect of the rising bubbles is
obvious. Several models for such a bubble induced turbulence
have been proposed, but their model parameters so far seem not to
possess much predictive power. Fundamental research, therefore,
has to focus on the question of how bubbles in a swarm interact
and change the turbulent energy generation and dissipation, as
well as the bubble dispersion. Direct numerical simulation (DNS)
of a flow of bubble clusters using continuum equations (Tryggva-
son et al., 1998) or a lattice Boltzmann approach (Shan and Chen,
1993) in combination with detailed flow visualization experiments
which simultaneously show the dynamics of bubbles and the
surrounding liquid (Borchers, 2002) are required to develop reli-
able models on this detailed level. After verification, they can be
used to provide a well based description of the turbulent interac-
tion phenomena, presently missing in the volume averaging two-
fluid models.

In the meantime some caution concerning the predictive
power of two-fluid models in the concentrated bubble flow
regime is certainly justified.
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Notation

Cam � added mass coefficient, dimensionless
Cd � drag coefficient, dimensionless

Ck, C� � model coefficients for bubble induced turbulence, dimension-
less

Cl � life coefficient, dimensionless
Cw � model coefficient, Cw � 5 � 104 kg/m3 � s

d � diameter, m
Dturb � turbulent diffusion tensor, m2/s

Eö � Eötvös number, dimensionless, Eö � g|ldb
2/�

Fint � interphase force, N/m3

g � gravitational constant, 9.81 m/s2

k � turbulent kinetic energy, m2/s2

m � mass, kg
Mo � Morton number, dimensionless, Mo � g
l

4/|1�3

p � pressure, N/m2

Re � Reynolds number, dimensionless, Re � |ldb�ub � ul�/
l

Sk, S� � additional source terms in k- or �-equation
Sc � Schmidt number, dimensionless

t � time, s
Tturb � turbulent stress tensor, N/m2

Vb � volume, m3

u � velocity vector, m/s
We � Weber number, dimensionless, We � |l�ub � ul�2db/�

Greek Letters

� � dissipation rate of turbulent kinetic energy, m2/s2

� � holdup, dimensionless

turb � turbulent eddy viscosity, kg/(ms)

� � gradient operator [�(�/� x, �/� y, �/� z)]
| � density, kg/m3

� � surface tension, kg/s2

Sub- or Superscripts

am � added mass
b � bubble

BI � bubble-induced
d � drag
g � gas phase or gravity
k � gas or liquid phase
l � liquid phase or lift
p � pressure

SI � shear-induced
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Column Reactors: Gas-Liquid Flow and Chemical Reaction,” Chem.
Eng. Sci., 56, 239 (2001).

Lin, T.-J., J. Reese, T. Hong, and L.-S. Fan, “Quantitative Analysis and
Computation of Two-Dimensional Bubble Columns,” AIChE J., 42, 301
(1996).

Liu, T. J., “Experimental Investigation of Turbulence Structure in Two-
Phase Bubbly Flow,” PhD Thesis, Northwest University (1989).

Lopez de Bertodano, M., R. T. Lahey, Jr., and O. C. Jones, “Development
of a k-� Model for Bubbly Two-Phase Flow,” Trans. of ASME, 116, 128
(1994a).

Lopez de Bertodano, M., R. T. Lahey, Jr., and O. C. Jones, “Phase
Distribution in Bubbly Two-Phase Flow in Vertical Ducts,” Int. J.
Multiphase Flow, 20, 805 (1994b).

Morud, K. E., “Turbulent Two-Phase Flow in Bubble Columns and Stirred
Fermenters,” Dr. Ing. Thesis, NTH, TMIH, Porsgrunn, Norway (1994).

Morud, K. E., and B. H. Hjertager, “LDA Measurements and CFD Mod-
elling of Gas-Liquid Flow in a Stirred Vessel,” Chem. Eng. Sci., 51, 233
(1996).

Mudde, R. F., D. J. Lee, J. Reese, and L.-S. Fan, “Role of Coherent
Structures on Reynolds Stresses in a 2-D Bubble Column,” AIChE J., 43,
913 (1997).

Mudde, R. F., and O. Simonin, “Two- and Three-Dimensional Simulations
of a Bubble Plume Using a Two-Fluid Model,” Chem. Eng. Sci., 54,
5061 (1999).

Mudde, R. F., and H. E. A. van den Akker, “Dynamic Behavior of the Flow
Field of a Bubble Column at Low to Moderate Gas Fractions,” Chem.
Eng. Sci., 54, 4921 (1999).

Murai, Y., and Y. Matsumoto, “Numerical Analysis of Detailed Flow
Structures of a Bubble Plume,” JSME Int. J. Ser. B, 41, 568 (1998).

Pan, S.-M., Y.-H. Ho, and W.-S. Hwang, “Three-Dimensional Fluid Flow
Model for Gas-Stirred Ladles,” J. of Materials Eng. and Performance
(JMEPEG), 6, 311 (1997).

Pan, Y., M. P. Dudukovic, and M. Chang, “Dynamic Simulation of Bubbly
Flow in Bubble Columns,” Chem. Eng. Sci., 54, 2481 (1999).

Pan, Y., M. P. Dudukovic, and M. Chang, “Numerical Investigation of
Gas-Driven Flow in 2-D Bubble Columns,” AIChE J., 46, 434 (2000).

Park, H.-J., and W.-J. Yang, “Turbulent Two-Phase Mixing in Gas-Stirred

44 AIChE JournalJanuary 2004 Vol. 50, No. 1



Ladle Systems for Continuous Casting Applications,” Numerical Heat
Transfer, Part A, 31, 493 (1997).

Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
New York (1980).

Pfleger, D., and S. Becker, “Modelling and Simulation of the Dynamic
Flow Behavior in a Bubble Column,” Chem. Eng. Sci., 56, 1737 (2001).

Ranade, V. V., and H. E. A. van den Akker, “A Computational Snapshot
of Gas-Liquid Flow in Baffled Stirred Reactors,” Chem. Eng. Sci., 49,
5175 (1994).

Richardson, J. R., and W. N. Zaki, “Sedimentation and Fluidization: I,”
Trans. Inst. Chem. Eng., 32, 35 (1954).

Sanyal, J., S. Vasquez, S. Roy, and M. P. Dudukovic, “Numerical Simu-
lation of Gas-Liquid Dynamics in Cylindrical Bubble Column Reac-
tors,” Chem. Eng. Sci., 54, 5071 (1999).

Sato, Y., and K. Sekoguchi, “Liquid Velocity Distribution in Two-Phase
Bubble Flow,” Int. J. Multiphase Flow, 2, 79 (1975).

Sato, Y., M. Sadatomi, and K. Sekoguchi, “Momentum and Heat Transfer
in Two-Phase Bubble Flow,” Int. J. Multiphase Flow, 7, 167 (1981).

Schlueter, M., and N. Raebiger, “Bubble Swarm Velocity in Two-Phase
Flows,” HTD-Vol. 361, Proc. of ASME Heat Transfer Division, Volume
5, ASME, New York (1998).

Schwarz, M. P., and W. J. Turner, “Applicability of the Standard k-�
Turbulence Model to Gas-Stirred Baths,” Appl. Math. Modelling, 12,
273 (1988).

Serizawa, A., Fluid-Dynamic Characteristics of Two-Phase Flow, PhD
Thesis, Kyoto University (1974).

Serizawa, A., I. Kataoka, and I. Michiyoshi, “Phase Distribution in Bubbly
Flow,” Proc. Int. Workshop on Two-Phase Flow Fundamentals, Data
Set No. 24 (1986).

Shan, X., and H. Chen, “Lattice Boltzmann Model for Simulating Flows
with Multiple Phases and Components,” Physical Rev. E, 47, 1815
(1993).

Simonin, O., and P. Violet, “Modelling of Turbulent Two-Phase Jets
Loaded with Discrete Particles,” Phenomena in Multiphase Flow, F. G.
Hewitt, et al., eds., Hemisphere, Washington, DC, pp. 259–269 (1990).

Sokolichin, A., and G. Eigenberger, “Gas-Liquid Flow in Bubble Columns
and Loop Reactors: Part I. Detailed Modeling and Numerical Simula-
tion,” Chem. Eng. Sci., 49, 5735 (1994).

Sokolichin, A., G. Eigenberger, A. Lapin, and A. Lübbert, “Dynamic
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